HABILITATION THESIS

Advanced Signal Processing Techniques in the Field of Electronic Warfare

Scientific Domain:
Electronic Engineering and Telecommunications

Author:
Professor Iulian-Constantin Vizitiu, Ph.D.
Faculty of Military Electronic and Information Systems

Bucharest
2015
This habilitation thesis is dedicated to my family: Claudia and Alexandru
Acknowledgements

First of all, I would like to thank Brigadier General Prof. Dr. Ing. Ștefan Demeter as scientific adviser, for its significant steadfast support and valuable advices in all scientific and administrative matters during my PhD training.

On the other hand, the research results described in this habilitation thesis is based on previously published works and includes important contributions from a number of current and past research collaborators. Therefore, I would like to thank for their essential scientific contributions to: Brigadier General Prof. Dr. Ing. Gheorghe Iubu, Colonel Prof. Dr. Ing. Lucian Anton, Col. Prof. Dr. Ing. Ioan Nicolaescu, Col. Assoc. Prof. Dr. Ing. Adrian Radu, Col. Dr. Ing. Aurelian Nicula, Lt.col. Assoc. Prof. Dr. Ing. Florin Popescu, Maj. Assoc. Prof. Dr. Ing. Cristian Molder, Maj. Assoc. Prof. Dr. Ing. Iulian Rîncu and Assoc. Prof. Dr. Ing. Florin Enache all from Military Communications and Electronic Systems Department of Military Technical Academy; Prof. Dr. Ing. Emanuel Rădoi from UBO, Brest, France; Assoc. Prof. Dr. Ing. Corneliu Ioana from INP Grenoble, France; Senior Researcher Dr. Ing. Cristian Coman from NATO NCI Agency, The Hague, Netherlands; Assoc. Prof. Dr. Ing. Doru Munteanu from MBTelecom, Romania.

Finally, all this would not have been possible without the unwavering and continuous support and encouragement provided by my wife Claudia, and the joy unselfishly offered by my little baby, Alexandru.
Contents

Chapter 1. Abstract
 1.1 Abstract
 1.2 Rezumat

Chapter 2. Scientific and professional achievements
 2.1 Overview of scientific activity and results (2004-2015)
 2.2 Contributions in the field of automatic target recognition systems
 2.2.1 Automatic target recognition: a literature survey
 2.2.2 Contributions in the field of feature extraction
 2.2.3 Contributions in the field of feature selection
 2.2.4 Contributions in the field of classification accuracy increasing
 2.2.4.1 Contributions in the field of decision fusion
 2.2.4.2 Contributions in the field of customized AT(T)R systems
 2.2.5 Contributions in the field of automatic license plate recognition
 2.2.6 Contributions in the field of automatic speech recognition
 2.3 Contributions in the field of high-resolution radar signal processing
 2.3.1 High-resolution radar signal processing: a literature survey
 2.3.2 Contributions in the field of NLFM signal synthesis
 2.3.2.1 Temporal predistortioning of LFM signals
 2.3.2.2 Synthesis of NLFM signals using stationary phase principle
 2.3.3 Contributions in the field of HRR imagery
 2.4 Contributions in the field of hybrid AI paradigms
 2.4.1 Hybrid AI paradigms: a literature survey
 2.4.2 Contributions in the field of GANN systems
 2.4.3 Contributions in the field of optimal hardware implementation of hybrid AI architectures
 2.5 Contributions in the field of electronic warfare
 2.5.1 Electronic warfare: a literature survey
 2.5.2 Contributions in the field of electronic warfare theory
 2.5.3 Contributions in the field of electronic warfare applications
 2.5.4 Contributions in the field of electronic warfare versus network centric warfare analysis

Chapter 3. Development and future work
 3.1 Scientific research activity
 3.2 Teaching activity
Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General references</td>
<td>141</td>
</tr>
<tr>
<td>List of representative publications (2004-2015)</td>
<td>156</td>
</tr>
<tr>
<td>List of acronyms</td>
<td>164</td>
</tr>
<tr>
<td>Index</td>
<td>167</td>
</tr>
</tbody>
</table>
List of figures

2.1: A basic block-diagram of a typical ATR system 19
2.2: A general block-diagram of a model-based recognition system 20
2.3: Model for statistical pattern recognition 21
2.4: The basic architectures of a GANN system 22
2.5: An example of dedicated NN for video image classification 22
2.6: Integrated system for radar-based situation assessment 23
2.7: Examples of well-known military aircraft thermal images 24
2.8: An example of multispectral (i.e., video, FLIR and HRR sensors) ATR system 24
2.9: The database acquisition experimental setup (for an HRR sensor) 31
2.10: Examples of target images from the available HRR/HH database 32
2.11: The classification experimental setup (for an HRR database) 32
2.12: The mapping error for all tested versions of Sammon projection algorithm 33
2.13: CRs as a function by the dimension of the projection space 34
2.14: The performance level for the best classification chain (for a SART NN) 34
2.15: Decision fusion of \(N_q \) classifiers through Sugeno’s fuzzy integral 37
2.16: Scale-reduced aircraft models used into anechoic chamber experiment 39
2.17: Target images from available HRR database 40
2.18: Decision fusion experimental setup 40
2.19: CR means calculated after the simulation process (for a decision fusion technique) 42
2.20: A comparative view of the output values assigned to the tested decision fusion techniques - fuzzy integral (blue), its genetic optimized version (red) 43
2.21: Classification results obtained in the case of the most two performing HRR data sets 43
2.22: Decision fusion results in the case of noisy classification environment 44
2.23: Positioning error of the target scattering points using ESPRIT-2D algorithm (for VV data set) 45
2.24: The block-diagram of the proposed V-ATTR system 46
2.25: The correction signals calculus in case of sensor positioning block 47
2.26: The basic architecture of RBF neural network (for tracking function) 48
2.27: The block-diagram of the mechanical rotation and focusing module 48
2.28: An example of hybrid neural classifier at the topological level 49
2.29: The block-diagram of the target selection block 49
2.30: An illustration of the target selection procedure 50
2.31: The two simulated trajectories of the targets 51
2.32: The dynamic positions of the two simulated targets 51
2.33: The database acquisition experimental setup (for a video database) 52
2.34: The fuzzy integral values during the decision fusion process 53
2.35: An example of 3D target model for F16 aircraft 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.36</td>
<td>The basic working configuration of the proposed ALPR system</td>
<td>56</td>
</tr>
<tr>
<td>2.37</td>
<td>The framework of the LP detection module</td>
<td>57</td>
</tr>
<tr>
<td>2.38</td>
<td>The framework of the symbol extraction module</td>
<td>57</td>
</tr>
<tr>
<td>2.39</td>
<td>An example of the LP artifact removal</td>
<td>58</td>
</tr>
<tr>
<td>2.40</td>
<td>The framework of the symbol recognition module</td>
<td>59</td>
</tr>
<tr>
<td>2.41</td>
<td>Examples of skeleton feature classification</td>
<td>60</td>
</tr>
<tr>
<td>2.42</td>
<td>The structure of the skeleton feature decision tree</td>
<td>61</td>
</tr>
<tr>
<td>2.43</td>
<td>The template matching symbol library</td>
<td>61</td>
</tr>
<tr>
<td>2.44</td>
<td>Symbol recognition using template matching criterion</td>
<td>62</td>
</tr>
<tr>
<td>2.45</td>
<td>The basic architecture of the proposed Romanian language ASR</td>
<td>65</td>
</tr>
<tr>
<td>2.46</td>
<td>The left-right topology HMM (for an ASR system)</td>
<td>65</td>
</tr>
<tr>
<td>2.47</td>
<td>An example of VAD working mechanism</td>
<td>66</td>
</tr>
<tr>
<td>2.48</td>
<td>An example of phonetic decision tree (for an ASR system)</td>
<td>67</td>
</tr>
<tr>
<td>2.49</td>
<td>The basic framework of the ASR testing stage</td>
<td>67</td>
</tr>
<tr>
<td>2.50</td>
<td>An example of MFCC versus time diagram used in our experiments</td>
<td>68</td>
</tr>
<tr>
<td>2.51</td>
<td>The block-diagram of the first model initialization technique (for an ASR system)</td>
<td>69</td>
</tr>
<tr>
<td>2.52</td>
<td>The block-diagram of the second model initialization technique (for an ASR system)</td>
<td>70</td>
</tr>
<tr>
<td>2.53</td>
<td>WER versus SNR in case of ASR system</td>
<td>71</td>
</tr>
<tr>
<td>2.54</td>
<td>The normalized envelope of the compression filter response (in dB) for the echo signal</td>
<td>72</td>
</tr>
<tr>
<td>2.55</td>
<td>The Fresnel ripples in the spectrum of radio LFM pulse</td>
<td>73</td>
</tr>
<tr>
<td>2.56</td>
<td>The temporal predistorting technique of LFM law</td>
<td>75</td>
</tr>
<tr>
<td>2.57</td>
<td>The absolute of the spectral density function for unpredistorted (red and arcsine predistorted (blue) FM signals</td>
<td>75</td>
</tr>
<tr>
<td>2.58</td>
<td>The average values of the sidelobes as a function by the frequency step</td>
<td>78</td>
</tr>
<tr>
<td>2.59</td>
<td>The shape of the normalized envelope of the compression-weighting (Hamming) filter response achieved in case of arcsine predistortioned/unpredistortioned FM signal</td>
<td>79</td>
</tr>
<tr>
<td>2.60</td>
<td>The normalized compression-weighting (Hamming) filter response in case of (i^{th}) predistortioning law</td>
<td>80</td>
</tr>
<tr>
<td>2.61</td>
<td>The normalized compression-weighting (Hamming) filter response as a function of time interval (\Delta t)</td>
<td>81</td>
</tr>
<tr>
<td>2.62</td>
<td>The criterion of stationary phase</td>
<td>84</td>
</tr>
<tr>
<td>2.63</td>
<td>The Taylor PSD functions</td>
<td>89</td>
</tr>
<tr>
<td>2.64</td>
<td>The normalized envelope of the signal autocorrelation function using the correction of the frequency deviation (for a Taylor PSD function)</td>
<td>89</td>
</tr>
<tr>
<td>2.65</td>
<td>Dependency between time of group delay and frequency for a signal having a Taylor PSD function</td>
<td>90</td>
</tr>
<tr>
<td>2.66</td>
<td>The frequency modulation law for a signal having a Taylor PSD function</td>
<td>90</td>
</tr>
<tr>
<td>2.67</td>
<td>The phase modulation law for a signal having a Taylor PSD function</td>
<td>91</td>
</tr>
<tr>
<td>2.68</td>
<td>The real shape assigned to the normalized envelope of the compression filter response for a signal having a Taylor PSD function</td>
<td>91</td>
</tr>
<tr>
<td>2.69</td>
<td>The Blackman-Harris PSD function</td>
<td>92</td>
</tr>
<tr>
<td>2.70</td>
<td>The normalized envelope of the signal autocorrelation function using the correction of the frequency deviation (for a Blackman-Harris PSD function)</td>
<td>93</td>
</tr>
<tr>
<td>2.71</td>
<td>Dependency between time of group delay and frequency for a signal having a Blackman-Harris PSD function</td>
<td>93</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.72</td>
<td>The frequency modulation law for a signal having a Blackman-Harris PSD function</td>
</tr>
<tr>
<td>2.73</td>
<td>The phase modulation law for a signal having a Blackman-Harris PSD function</td>
</tr>
<tr>
<td>2.74</td>
<td>The real shape assigned to the normalized envelope of the compression filter response for a signal having a Blackman-Harris PSD function</td>
</tr>
<tr>
<td>2.75</td>
<td>The ambiguity body for a signal having a Blackman-Harris PSD function</td>
</tr>
<tr>
<td>2.76</td>
<td>The frequency modulation law (for a \cos^n PSD function)</td>
</tr>
<tr>
<td>2.77</td>
<td>The real shape of the normalized envelope of the compression filter response (for a \cos^n PSD function)</td>
</tr>
<tr>
<td>2.78</td>
<td>The frequency modulation law (for a \cos^2 on pedestal PSD function)</td>
</tr>
<tr>
<td>2.79</td>
<td>The real shape of the normalized envelope of the compression filter response (for a \cos^2 on pedestal PSD function)</td>
</tr>
<tr>
<td>2.80</td>
<td>An example of target HRRP</td>
</tr>
<tr>
<td>2.81</td>
<td>The block-diagram of receiver signal processor</td>
</tr>
<tr>
<td>2.82</td>
<td>Experimental results (for HRR imagery/SNR=25 dB)</td>
</tr>
<tr>
<td>2.83</td>
<td>Experimental results (for HRR imagery/SNR=3 dB)</td>
</tr>
<tr>
<td>2.84</td>
<td>The interpolation procedure of the available HRRP samples</td>
</tr>
<tr>
<td>2.85</td>
<td>Examples of target images achieved by IFFT 2D-based reconstruction algorithm</td>
</tr>
<tr>
<td>2.86</td>
<td>Examples of target images achieved by MUSIC 2D-based reconstruction algorithm</td>
</tr>
<tr>
<td>2.87</td>
<td>The encoding technique used in case of the first GA module (for a GARBF system)</td>
</tr>
<tr>
<td>2.88</td>
<td>The encoding technique used in case of the second GA module (for a GARBF system)</td>
</tr>
<tr>
<td>2.89</td>
<td>The block-diagram of the first experimental objective (for a GARBF system)</td>
</tr>
<tr>
<td>2.90</td>
<td>A 2D projection of the center mapping at the end of the first GA module (for a GARBF system)</td>
</tr>
<tr>
<td>2.91</td>
<td>The block-diagram of the second experimental objective (for a GARBF system)</td>
</tr>
<tr>
<td>2.92</td>
<td>Experimental results (for a GARBF system)</td>
</tr>
<tr>
<td>2.93</td>
<td>The encoding technique used in case of the first GA module (for a GAMLP system)</td>
</tr>
<tr>
<td>2.94</td>
<td>The encoding technique used in case of the second GA module (for a GAMLP system)</td>
</tr>
<tr>
<td>2.95</td>
<td>Experimental results (for a GAMLP system)</td>
</tr>
<tr>
<td>2.96</td>
<td>FPGA architecture used to implement a single hidden neuron (with Gaussian transfer function)</td>
</tr>
<tr>
<td>2.97</td>
<td>A comparative view between hardware and software Gaussian transfer functions</td>
</tr>
<tr>
<td>2.98</td>
<td>FPGA full architecture used for hardware implementation of RBF NN</td>
</tr>
<tr>
<td>2.99</td>
<td>The classification results achieved in the case of FPGA RBF architecture</td>
</tr>
<tr>
<td>2.100</td>
<td>ICs architectures used to implement different neural transfer functions</td>
</tr>
<tr>
<td>2.101</td>
<td>A comparative view between hardware and software logsig transfer functions</td>
</tr>
<tr>
<td>2.102</td>
<td>ICs full architecture used for hardware implementation of MLP NN</td>
</tr>
<tr>
<td>2.103</td>
<td>The classification results achieved in the case of ICs MLP architecture</td>
</tr>
</tbody>
</table>
Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.104</td>
<td>FPGA architecture used to implement a single hidden neuron (with logsig transfer function)</td>
<td>122</td>
</tr>
<tr>
<td>2.105</td>
<td>A comparative view between hardware and software logsig transfer functions</td>
<td>123</td>
</tr>
<tr>
<td>2.106</td>
<td>FPGA full architecture used for hardware implementation of MLP NN</td>
<td>123</td>
</tr>
<tr>
<td>2.107</td>
<td>The classification results achieved in the case of FPGA MLP architecture</td>
<td>124</td>
</tr>
<tr>
<td>2.108</td>
<td>EW basic taxonomy</td>
<td>125</td>
</tr>
<tr>
<td>2.109</td>
<td>Some examples of STEALTH technology applications</td>
<td>126</td>
</tr>
<tr>
<td>2.110</td>
<td>Some specific windows of the dedicated EW GUI</td>
<td>129</td>
</tr>
<tr>
<td>2.111</td>
<td>An example of possible EW scenario analysed in the case of passive jamming</td>
<td>131</td>
</tr>
<tr>
<td>2.112</td>
<td>Delta experiment: NCW versus platform centric warfare by view of the generated combat power</td>
<td>132</td>
</tr>
<tr>
<td>2.113</td>
<td>The main entities of the NCW battlespace</td>
<td>132</td>
</tr>
<tr>
<td>2.114</td>
<td>The potential impact of EW on C2 cycle</td>
<td>133</td>
</tr>
<tr>
<td>2.115</td>
<td>The Romanian integrated C2EW system AZUR</td>
<td>134</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Experimental results (for an HRR database)</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Experimental results (for a decision fusion technique)</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Examples of possible syntaxes according to Romanian LP standard</td>
<td>59</td>
</tr>
<tr>
<td>2.4</td>
<td>The character occurrence probabilities calculated according to the number plate symbol numbers and positions</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>The CRs achieved for each individual classification criterion (for an ALPR system)</td>
<td>63</td>
</tr>
<tr>
<td>2.6</td>
<td>The CRs achieved for tested decision fusion rules (for an ALPR system)</td>
<td>64</td>
</tr>
<tr>
<td>2.7</td>
<td>WER in case of the clean stage (for an ASR system)</td>
<td>70</td>
</tr>
<tr>
<td>2.8</td>
<td>WER in case of the matched and multistyle trained systems (for an ASR system)</td>
<td>71</td>
</tr>
<tr>
<td>2.9</td>
<td>Experimental results (for NLFM signal processing)</td>
<td>80</td>
</tr>
<tr>
<td>2.10</td>
<td>Experimental results (for t^n predistortioning law)</td>
<td>81</td>
</tr>
<tr>
<td>2.11</td>
<td>Experimental results (for stationary phase principle)</td>
<td>98</td>
</tr>
<tr>
<td>2.12</td>
<td>Experimental results (for a GARBF system)</td>
<td>111</td>
</tr>
<tr>
<td>2.13</td>
<td>Experimental results (for a comparative study SART-GARBF system)</td>
<td>112</td>
</tr>
<tr>
<td>2.14</td>
<td>Experimental results (for a GAMLPI system)</td>
<td>115</td>
</tr>
</tbody>
</table>
Chapter 1

Abstract

1.1 Abstract

The present habilitation thesis is a cumulative synthesis of my relevant professional and research results achieved in the period 2004-2015, following the public presentation of my doctoral thesis in 2003.

In this period, my research activity covered four important research areas: Automatic target recognition (ATR) systems, High-resolution radar (HRR) signal processing, Hybrid artificial intelligence (AI) paradigms and Electronic warfare (EW), respectively. These are the core domains of my professional training and education.

The present habilitation thesis is structured into three parts. The first part overviews concisely my teaching and research activities. The second part presents the most important achievements related to the four major research fields mentioned above, each interesting research direction being fully-described in a dedicated section. The third part draws the future objectives and directions of scientific research in the fields presented before. Also, two comprehensive annexes present the general references and the list of my scientific publications.

The main core of this habilitation thesis is geared on my scientific research directions and achievements which are synthetically described hereinafter.

In ATR systems research field, my work was mainly focused on identifying and testing more efficient and performing classification/PR chains for different spectral input information flows (belonging to video, thermal and HRR imageries). Consequently, there were investigated some improved techniques of feature extraction (i.e., a new set of invariants related to Flusser moments family) and selection (i.e., a generalized (neural) version of the standard Sammon mapping algorithm) for a pattern of interest. To increase the recognition accuracy of an ATR system, an advanced decision fusion technique based on Sugeno’s fuzzy integral was proposed. Furthermore, another approach to assure the highest classification rate was centered on the development of new customized PR chains. Finally, there were also discussed some improved design solutions in the field of automatic license plate and speech recognition, respectively.

My research activity in the ATR systems area was materialized in a national grant conducted by me as a project manager and five national projects, all following competitions, in which I was involved as a research team member. The experience accumulated working for these projects was put to use both to improve the scientific level of the courses I taught and to upgrade some of the facilities in the department’s laboratories (e.g., a modern anechoic chamber into audio spectrum, some dedicated PR/data fusion processing tools etc.). Moreover, I published more than 25 papers on this topic, among which 15 (10 as first author) in various prestigious ISI ranked journals and conferences with ISI CPCI proceedings. In addition, I co-authored a book in the field of EM image processing.

In the field of HRR signal processing, my work was mainly focused on designing new robust algorithms (concerning the level of the sidelobes) for the synthesis of NLFM signals and on studying some advanced superresolution methods in order to improve the quality of the available HRR imagery database. Consequently, the proposed NLFM synthesis techniques were based on both temporal predistortioning of LFM signals and stationary phase concept. In point of novelty, the proposed approach provides an effective modality to optimize (using the
sidelobe reduction criterion) the specific parameters of the investigated NLFM synthesis methods. Moreover, by applying such advanced algorithms alongside with minute simulations, a significant sidelobe suppression (more than -40 dB, on average) was obtained. Finally, my research activity was also focused on both the theoretical and experimental investigation of some superresolution techniques used to generate the target HRRPs and the design of suitable reconstruction algorithms of the target radar images for different PR tasks, respectively.

It is worth noticing that the main results achieved in the HRR signal processing area were supported by two national projects following competition in which I was involved as a research team member. In addition, I published more than 10 papers, among which 7 (5 as first author) in various well-known ISI ranked journals and conferences with ISI CPCI proceedings.

The fusion between the standard connexionist models and some relatively recent mathematical theories had as effect an explosive theoretical and experimental development of new powerful hybrid AI (also known as neuro-fuzzy-genetic) architectures. In this still promising research area, my activity was mainly targeted at investigating, theoretically and experimentally, some hybrid AI paradigms, focusing directly on both GANN systems theory and their hardware implementations. Consequently, there were proposed two improved algorithms used to ensure a full-training genetic procedure for both RBF (i.e., a GARBF system) and MLP (i.e., a GAMLp system) networks. Within this framework it was also carried out a comparative study between the current approaches based on FPGA technology and some of the standard neurohardware solutions.

The relevant results of my research in the hybrid AI paradigms domain were the outcome of my work as a research team member in four national projects following competition. In this context, I published more than 15 papers, among which 10 (8 as first author) in various prestigious ISI ranked journals and conferences with ISI CPCI proceedings. Moreover, it is worth mentioning that I was the single author of three books introducing important approaches in the field of hybrid AI models and the co-author of a book in the GANN systems theory domain.

Generally, my research activity in the EW domain can be divided into two important directions, i.e., the publishing activity and the actual research activity, respectively. I think that it is very important to start by mentioning that Romanian literature faces a major lack of current information in the technical field of EW. Taking that into account, my publishing activity is significant coming as a result of many years of scientific documentation in this area. Consequently, it is worth mentioning that I was the single author of two reference books in this field (very importantly, a unique endeavor in Romanian EW literature, so far). In addition, I published two more books as single author and co-authored another book, all extremely useful for understanding some theoretical and practical aspects of EW.

The actual research activity in the EW field was carried out as a project manager of three projects of the Defense Ministry’s research program or as a research team member in two projects of the same program. It is also important to mention that I was involved in more than twelve national research projects following competition, acting as a research team member.

An additional direction of interest in the EW field appeared from the necessity to understand the complex connections between EW and other modern concepts of the current military battlefield (e.g., the NCW concept). In this area, I published more than 25 papers, among which 15 (10 as first author) in some prestigious ISI ranked journals and conferences with ISI CPCI proceedings.

The consistent research experience and expertise achieved in the EW domain allowed me to participate in specific standardization and military acquisition activities. Consequently, I was involved as a member of the working team (2004-2008), either in the development or the acceptance of four MIL/STANAG standards. In addition, in 2010, I participated as a technical expert, in an acquisition group of some dedicated military products for the aviation EW area.
1.2 Rezumat

În cadrul acestei teze de abilitare sunt prezentate cele mai importante rezultate obținute în perioada 2004-2015, atât în plan profesional, cât și în activitatea de cercetare științifică. Această perioadă este cea a urmat anului 2003, an în care am susținut teza de doctorat.

În perioada mai sus menționată, activitatea mea de cercetare a cuprins patru direcții majore de cercetare științifică: Sisteme de recunoaștere automată a țintelor (ATR), Procesarea semnalelor radar de înaltă rezoluție (HRR), Paradigme hibride ale inteligenței artificiale (AI) și respectiv, Războiul electronic (EW). Practic, aceste patru domenii de interes au reprezentat și baza întregii mele pregătiri profesionale.

Teza de abilitare este structurată în trei părți distincte. Astfel, prima parte este un rezumat sintetic al activității mele didactice și de cercetare științifică. În partea a doua sunt prezentate cele mai importante realizări în domeniile de interes amintite anterior, fiecare direcție de interes fiind descrisă în detaliu, într-o secțiune separată. Partea a treia a tezei de abilitare trasează direcțiile de dezvoltare și obiectivele de lucru în domeniile de cercetare prezentate anterior. De asemenea, această lucrare conține și două anexe comprehensive care prezintă bibliografia generală și lista publicațiilor mele științifice.

În domeniul sistemelor ATR, activitatea mea de cercetare științifică a fost focalizată în principal, pe identificarea și testarea unor lanțuri de clasificare eficiente din perspectiva unor fluxuri informaționale de intrare diferite (aparținând imageriilor de tip video, termal și HRR). Prin urmare, au fost investigate unele tehnici îmbunătățite de extragere (un nou set de invarianți aparținând familiei momentelor Flusser) și respectiv, selecție (o versiune (neuronală) generalizată a algoritmului standard de proiecție Sammon) a caracteristicilor unei forme de interes. Pentru creșterea acurateții de recunoaștere a unui sistem ATR, a fost propusă o tehnică avansată de fuziune decizională bazată pe integrala fuzzy Sugeno. Suplimentar, tot în contextul creșterii ratei de clasificare, o altă direcție vizată a fost avansarea criterionului cost-effort, a algoritmului standard de proiecție Sammon) iar în ultimul rând, am fost co-autor la o carte în domeniul procesării semnalelor HRR.

Activitatea mea de cercetare științifică în domeniul sistemelor ATR s-a concretizat într-un proiect național pe care l-am condus în calitate de director de proiect și respectiv, cinci proiecte naționale, toate prin competiție, în care am fost implicat ca și membru în echipa de lucru. Experiența acumulată prin aceste proiecte de cercetare științifică a fost utilizată atât în îmbunătățirea cursurilor predate, cât și în dezvoltarea unor facilități moderne în laboratoarele departamentului (spre exemplu, o cameră anecoidă în spectrul audio, unele instrumente de procesare dedicate în domeniul recunoașterii formelor/fuziunii de date etc.). De asemenea, am publicat peste 25 de articole în acest sens, dintre care 15 (10 ca autor principal) în diferite reviste indexate ISI sau proceedings-urile unor conferințe ISI CPCI. Nu în ultimul rând, am fost co-autor la o carte din domeniul procesării imaginilor electromagnetice.

În domeniul procesării semnalelor HRR, activitatea mea de cercetare științifică a fost focalizată în principal, pe proiectarea unor algoritmi robusti (ca și nivelul al lobilor secundari) de sinteză a semnalelor de tip NLFM și respectiv, pe studiul unor metode avansate de înaltă rezoluție, totul în ideea creșterii calității bazei de date HRR avută la dispoziție. În consecință, tehnici de sinteză propuse au avut un impact direct în elaborarea unor sisteme de recunoaștere eficiente și eficace în domeniul HRR. Acest lucru a contribuit semnificativ la îmbunătățirea performanțelor sistemelor ATR, atât din punct de vedere prin creșterea acurateții de recunoaștere, cât și prin creșterea preciziei și specificității clasificării țintelor.
activitatea mea de cercetare științifică a presupus și investigarea atât la nivel teoretic, cât și experimental, a unor tehnici de înaltă rezoluție pentru a genera profilele sintetice de distanță ale unor ținte, precum și proiectarea unor algoritmi eficienți de reconstrucție a imaginii radar a unei ținte, totul în ideea implementării unor aplicații complexe de recunoaștere a formelor.

Trebuie amintit și faptul că, rezultatele științifice majore obținute în contextul procesării semnalelor HRR au fost fundamentate și pe cele două proiecte de cercetare naționale câștigate prin competiție, în care am fost implicat ca și membru în echipa de lucru. De asemenea, am publicat peste 10 articole în acest sens, dintre care 7 (5 ca autor principal) în diferite reviste indexate ISI sau proceedings-urile unor conferințe ISI CPCI.

Fuziunea modelelor conexioniste standard cu unele teorii matematice relativ recente a avut ca prim efect, o dezvoltare explozivă atât la nivel teoretic, cât și experimental, a unor arhitecturi robuste de tip neuro-fuzzy-genetice. În acest domeniu de cercetare încă promițător, activitatea mea a fost focalizată în principal, pe investigarea unor noi tipuri de modele AI hibride, cu o atenție sporită acordată teoriei sistemelor de tip GANN și respectiv, implementării hardware a acestora. Prin urmare, în cadrul lucrării de față au fost propuși și descriși în detaliu doi algoritmi genetici dedicați asigurării unui proces de instruire complet pentru o rețea neuronală RBF (un sistem de tip GARBF) și respectiv, feedforward/MLP (un sistem de tip GAML). De asemenea, a fost realizat un studiu comparativ între abordările curente bazate pe utilizarea tehnologiei FPGA și unele soluții neuro-hardware standard.

Rezultatele științifice relevante obținute în investigarea modelelor AI hibride au fost generate în cadrul a patru proiecte de cercetare naționale, toate câștigate prin competiție, în care am fost implicat ca membru în echipa de lucru. În acest context, am publicat peste 15 articole, dintre care 10 (8 ca autor principal) în diferite reviste indexate ISI sau proceedings-urile unor conferințe ISI CPCI. În plus, am fost autor unic pentru trei cărți, importante ca exemplu, conceptul NCW). În acest domeniu de cercetare am publicat peste 25 de articole, dintre care 15 (10 ca autor principal) în diferite reviste indexate ISI sau proceedings-urile unor conferințe ISI CPCI.

În general, activitatea mea de cercetare științifică în domeniul EW ar putea fi împărțită în două direcții majore, și anume: activitatea publicistică și respectiv, cea de cercetare proprie-zisă. Pentru început este foarte important de știut faptul că, în literatura de limbă română există o lipsă acută de informații curente în domeniul tehnic asociat EW. Din acest punct de vedere, activitatea mea publicistică obținută în urma unui proces îndelungat de documentare științifică în acest domeniu este una, în opinia mea, semnificativă. Astfel, trebuie amintit faptul că în calitate de unic autor, am elaborat două cărți de referință în domeniu (foarte important, un demers, cu puțin până în momentul de față, unic in literatura română în domeniul EW). De asemenea, tot în calitate de unic autor, am publicat două cărți, iar în calitate de co-autor, o carte, toate extrem de utile în înțelegerea unor aspecte teoretice și practice esențiale ale EW.

Cercetarea științifică proprie-zisă în domeniul EW a fost concretizată atât în calitate de director de proiect pentru trei proiecte derulate în programul de cercetare al Ministerului Apărării Naționale, cât și ca membru în echipa de lucru a două proiecte, în cadrul aceluiași program. De asemenea, este important de menționat că am fost implicat în peste dousprezece proiecte naționale câștigate prin competiție, ca membru în echipa de lucru.

O altă direcție de interes în domeniul EW a fost legată de necesitatea înțelegerea conexiunilor complexe între acesta și alte concepte moderne ale câmpului de luptă actual (spre exemplu, conceptul NCW). În acest domeniu de cercetare am publicat peste 25 de articole, dintre care 15 (10 ca autor principal) în diferite reviste indexate ISI sau proceedings-urile unor conferințe ISI CPCI.

Experiența consistentă și expertiza acumulată în aria EW mi-au permis să participe la activități specifice de standardizare și respectiv, achiziții pe linie militară. Prin urmare, am fost implicat, ca membru în echipa de lucru (2004-2008), în dezvoltarea sau acceptarea a patru standarde de tip MIL/STANAG. De asemenea, în anul 2010, am participat, în calitate de expert tehnic, într-un proces specific de achiziții de produse militare din domeniul EW în aviație.
References

General references

[54] I.C. Vizitiu (project manager), *Dezvoltarea unui sistem multisenzor inteligent pentru urmărire şi recunoaşterea automată a ţintelor aeriene (Development of a smart multisensor tracking and recognition system of aerial targets)*, Raport final de cercetare ştiinţifică, grant CNCSIS nr. GR 88/2006, perioada de derulare: 2006-2007

Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

[70] I.C. Vizitiu, G. Gavrioloaia, Prelucrarea de nivel mediu a imaginilor (Medium level image processing), Editura Academiei Tehnice Militare, 2002
[75] J. Qiu, H. Wang, J. Lu et al., Neural network implementations for PCA and its extensions, ISRN Artificial Intelligence, article ID 847305, 19 pp., 2012
[89] T.J. Ross, *Fuzzy logic with engineering applications (Fuzzy pattern recognition)*, Wiley Online Library, 2011

[118] I.C. Vizitiu (project manager), Posibilități de recunoaștere a țintelor aeriene cu ajutorul rețelelor neuronale (Pattern recognition capabilities of aerial targets using artificial neural networks), Raport final de cercetare științifică, grant CNCSIS nr. GR 57/2001, perioada de derulare: 2001-2002

[120] ***, License plate reader, ELSAG Company, 2015

Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

References
Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

[153] V. Velican, Algorithms for identification, evaluation, and correction of audio-

[158] G. Iubu, Procesarea optimă a semnalelor (Optimal processing of signals), Editura Academiei Tehnice Militare, 1998
modulated waveforms, Proceedings of the IEEE CSPA Conference, pp. 399-403, 2011
References

Advanced signal processing techniques in the field of electronic warfare

References

Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

[239] F. Enache, Metode de analiză a circuitelor de radiofrecvență (Analysis methods of RF circuits), Editura Academiei Tehnice Militare, 2014

[240] Y. Liao, Neural networks in hardware: a survey, Department of Computer Science, University of California, 2001

152

Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

[290] ***, *Joint electromagnetic spectrum management operations*, Joint Publication 6-01, 2012

[312] G. Jeler, M. Miharta, *Logistics of international missions under UN jurisdiction, Buletinul Universității Naționale de Apărare, no. 4, pp.165-171, 2013*

[315] I.C. Vizitiu (project manager), *Generatoare de bruiaj pentru antrenarea echipajelor radar din sistemul de supraveghere aeriană și din cadrul sistemelor GBAD (Jammers to train the crew from the air surveillance system and GBAD systems)*, Raport tehnic, proiect de cercetare științifică din Planul sectorial al Ministerului Apărării Naționale nr. 178/2011, perioada de derulare: 2011

2015

2014

2013

156
References

2012

2011

2010

Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

[10_07] I.C.Vizitiu, A genetic procedure used to train RBF neural networks, International Conference on Neural Networks (NN), pp. 244-249, 2010
[10_11] T.Niculescu, I.C.Vizitiu, Applications of AI paradigms in the field of INT techniques class, Proceedings of the International Conference of the National Intelligence Academy, pp. 53-58, 2010

2009

[09_05] I.C.Vizitiu, P.Ciotîrnae, Multispectral neural ATR system using the decision fusion between HRR and thermal imaginary, Proceedings of the International Conference ICMT, pp. 261-268, 2009
[09_08] I.C.Vizitiu, ATR system using the decision fusion on available multispectral information, Proceedings of the IEEE International Conference ECAI, no. 4, pp. 53-58, 2009

2008

158
159

References

2007

2006

2005

[05_17] M.Popescu, Ş. Demeter, I.C.Vizitiu, M. Popa, Procesarea imaginilor electromagnetice (Electromagnetic image processing), Editura ADALEX, 2005
[05_18] I.C.Vizitiu, M.Popescu, Ş.Demeter, Metode de optimizare a reţelelor neuronale artificiale (Optimization methods of artificial neural networks), Editura ADALEX, 2005
Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

2004

[04_01] Stoica, I.C. Vizitiu, I. Nicolaescu, L. Anton, Considerations about the design requirements for analog anti-aliasing filters, Buletinul științific al Universității Politehnica Timișoara "Transaction on Electronics and Communications", pp. 150-153, tom 49 (63), fascicola 2, 2004

[04_03] I.C.Vizitiu, Sistem neuronal de urmărire și recunoaștere video a ţintelor aeriene (Video tracking and recognition neural system of aerial targets), Revista Tehnică Militară, no. 3-4, pp. 34-39, 2004

[04_04] I.C.Vizitiu, Războiul electronic aeropurtat în conflictele secolului XX (The airborne electronic warfare in the 20th century), Revista "Cer senin", no. 6 (77), pp. 34-36, 2004

[04_09] A.Stoica, I.C.Vizitiu, Contributions to study the inertial missile guidance systems, Proceedings of the International Symposium on Defence Technology, pp. 75-78, 2004

[04_12] A.Stoica, I.C.Vizitiu, Considerations about the design requirements for analog anti-aliasing filters, Simpozionul de "Electronică și Telecomunicații" (ETC), tom 49 (63), fascicola 2, pp. 150-153, 2004

References

List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEW</td>
<td>Aviation EW</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ALPR system</td>
<td>Automatic License Plate Recognition system</td>
</tr>
<tr>
<td>AOA</td>
<td>Angle Of Arrival</td>
</tr>
<tr>
<td>ARM</td>
<td>Antiradiation Missile</td>
</tr>
<tr>
<td>ART</td>
<td>Adaptive Resonance Theory</td>
</tr>
<tr>
<td>ASR system</td>
<td>Automatic Speech Recognition system</td>
</tr>
<tr>
<td>ATR system</td>
<td>Automatic Target Recognition system</td>
</tr>
<tr>
<td>ATTR system</td>
<td>Automatic Target Tracking and Recognition system</td>
</tr>
<tr>
<td>BP rule</td>
<td>Back-Propagation rule</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>C2 concept</td>
<td>Command-Control concept</td>
</tr>
<tr>
<td>C4I2SR system</td>
<td>Command-Control-Communications-Computer-Information-Interoperability-Surveillance-Reconnaissance system</td>
</tr>
<tr>
<td>CCD technology</td>
<td>Charge Coupled Device technology</td>
</tr>
<tr>
<td>CD model</td>
<td>Context-Dependent model</td>
</tr>
<tr>
<td>CEW</td>
<td>Communications EW</td>
</tr>
<tr>
<td>CMN</td>
<td>Cepstral Mean Normalization</td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional NN</td>
</tr>
<tr>
<td>COMINT</td>
<td>COMMunications INTelligence</td>
</tr>
<tr>
<td>COMSEC</td>
<td>COMMunications SECurity</td>
</tr>
<tr>
<td>CR</td>
<td>Classification Rate</td>
</tr>
<tr>
<td>CSR</td>
<td>Continuous Speech Recognition</td>
</tr>
<tr>
<td>CybW</td>
<td>Cyber War</td>
</tr>
<tr>
<td>DA technique</td>
<td>Dual Apodization technique</td>
</tr>
<tr>
<td>DEW</td>
<td>Directed Energy Weapons</td>
</tr>
<tr>
<td>DF</td>
<td>Data Fusion</td>
</tr>
<tr>
<td>DF</td>
<td>Direction Finding</td>
</tr>
<tr>
<td>DIP</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>EA</td>
<td>Electronic Attack</td>
</tr>
<tr>
<td>ECCM</td>
<td>Electronic Counter-CounterMeasures</td>
</tr>
<tr>
<td>ECM</td>
<td>Electronic CounterMeasures</td>
</tr>
<tr>
<td>ED</td>
<td>Electronic Deception</td>
</tr>
<tr>
<td>EFuNN</td>
<td>Evolving Fuzzy Neural Networks</td>
</tr>
<tr>
<td>ELINT</td>
<td>ELectronic INTelligence</td>
</tr>
<tr>
<td>EM</td>
<td>ElectroMagnetic</td>
</tr>
<tr>
<td>EMC</td>
<td>EM Compatibility</td>
</tr>
<tr>
<td>EMCON</td>
<td>EMission CONtrol</td>
</tr>
<tr>
<td>EP</td>
<td>Electronic Protection</td>
</tr>
<tr>
<td>ES data fusion</td>
<td>Expert Selection data fusion</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ES</td>
<td>Electronic Support</td>
</tr>
<tr>
<td>ESM</td>
<td>Electronic Support Measures</td>
</tr>
<tr>
<td>ESPRIT algorithm</td>
<td>Estimation of Signal Parameters by Rotational Invariance algorithm</td>
</tr>
<tr>
<td>EW</td>
<td>Electronic Warfare</td>
</tr>
<tr>
<td>FE</td>
<td>Feature Extraction</td>
</tr>
<tr>
<td>FFLN</td>
<td>Fuzzy Functional Link Nets</td>
</tr>
<tr>
<td>FLD analysis</td>
<td>Fisher Linear Discriminant analysis</td>
</tr>
<tr>
<td>FLIR</td>
<td>Forward Looking IR</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation</td>
</tr>
<tr>
<td>FOSART neural network</td>
<td>Fully self-Organizing Simplified ART neural network</td>
</tr>
<tr>
<td>FoV</td>
<td>Field of View</td>
</tr>
<tr>
<td>FPGA technology</td>
<td>Field-Programmable Gate Array technology</td>
</tr>
<tr>
<td>FS</td>
<td>Feature Selection</td>
</tr>
<tr>
<td>FuNN</td>
<td>Fuzzy NN</td>
</tr>
<tr>
<td>FUZZSAMM</td>
<td>FUZZy SAMMon</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GANN system</td>
<td>Genetic Algorithm Neural Network system</td>
</tr>
<tr>
<td>GPR</td>
<td>Ground Penetrating Radar</td>
</tr>
<tr>
<td>HD camera</td>
<td>High-Definition camera</td>
</tr>
<tr>
<td>HH polarization</td>
<td>Horizontal polarization at emission and receiving</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Models</td>
</tr>
<tr>
<td>HNN</td>
<td>Hardware NN</td>
</tr>
<tr>
<td>HRR</td>
<td>High Resolution Radar</td>
</tr>
<tr>
<td>HRRP</td>
<td>High Resolution Range Profile</td>
</tr>
<tr>
<td>HV polarization</td>
<td>Horizontal polarization at emission and Vertical at receiving</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Component Analysis</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse Fast Fourier Transform</td>
</tr>
<tr>
<td>INFOSEC</td>
<td>INFORMATION SECURITY</td>
</tr>
<tr>
<td>IR</td>
<td>InfraRed</td>
</tr>
<tr>
<td>ISAR</td>
<td>Inverse SAR</td>
</tr>
<tr>
<td>ISODATA</td>
<td>Iterative Self-Organizing Data Analysis Technique</td>
</tr>
<tr>
<td>ISR system</td>
<td>Intelligence, Surveillance and Reconnaissance system</td>
</tr>
<tr>
<td>LDHD</td>
<td>Low-Density High-Demand</td>
</tr>
<tr>
<td>LEM technique</td>
<td>Leakage Energy Minimization technique</td>
</tr>
<tr>
<td>LFM signal</td>
<td>Linear Frequency Modulation signal</td>
</tr>
<tr>
<td>LIDAR</td>
<td>Light Detection And Ranging</td>
</tr>
<tr>
<td>LoS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>LP</td>
<td>License Plate</td>
</tr>
<tr>
<td>LPR</td>
<td>License Plate Reader</td>
</tr>
<tr>
<td>LVQ neural network</td>
<td>Learning Vector Quantization neural network</td>
</tr>
<tr>
<td>MD data fusion</td>
<td>Median Voting data fusion</td>
</tr>
<tr>
<td>MDL technique</td>
<td>Minimum Description Length technique</td>
</tr>
<tr>
<td>MFCC</td>
<td>Mel-Frequency Cepstral Coefficients</td>
</tr>
<tr>
<td>MFR</td>
<td>Matched Filter Response</td>
</tr>
<tr>
<td>MJ data fusion</td>
<td>Majority Voting data fusion</td>
</tr>
<tr>
<td>MLP</td>
<td>MultiLayer Perceptron</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
</tbody>
</table>
Habilitation thesis: Advanced signal processing techniques in the field of electronic warfare

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT algorithm</td>
<td>Multistyle Training algorithm</td>
<td>NCW</td>
<td>Network Centric Warfare</td>
</tr>
<tr>
<td>MUSIC algorithm</td>
<td>MUltiple SIgnal Classification algorithm</td>
<td>OCR system</td>
<td>Optical Character Recognition system</td>
</tr>
<tr>
<td>NFN</td>
<td>Neo-Fuzzy Neuron</td>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>OPINT</td>
<td>OPTical INTeUgence</td>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PR</td>
<td>Pattern Recognition</td>
<td>PSD function</td>
<td>Power Spectral Density function</td>
</tr>
<tr>
<td>PSAR</td>
<td>Polarimetric SAR</td>
<td>PST function</td>
<td>Power Temporal Density function</td>
</tr>
<tr>
<td>RCS</td>
<td>Radar Cross Section</td>
<td>RBF neural network</td>
<td>Radial Basis Function neural network</td>
</tr>
<tr>
<td>REW</td>
<td>Radar EW</td>
<td>SAMMANN</td>
<td>SAMMon Artificial NN</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
<td>SAR</td>
<td>Supervised ART neural network</td>
</tr>
<tr>
<td>SART neural network</td>
<td>Supervised ART neural network</td>
<td>SIGINT</td>
<td>SIGnal INTeUgence</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
<td>SOM neural network</td>
<td>Self-Organizing Map neural network</td>
</tr>
<tr>
<td>SP principle</td>
<td>Stationary Phase principle</td>
<td>SVA technique</td>
<td>Spatially Variant Apodization technique</td>
</tr>
<tr>
<td>SSE</td>
<td>Sum-Squared Error</td>
<td>TEMPEST technology</td>
<td>Telecommunications Electronics Material Protected from Emanating Spurious Transmissions technology</td>
</tr>
<tr>
<td>TOA</td>
<td>Time Of Arrival</td>
<td>UWB technology</td>
<td>Ultra-WideBand technology</td>
</tr>
<tr>
<td>VAD</td>
<td>Voice Activity Detector</td>
<td>V-ATR system</td>
<td>Video-ATR system</td>
</tr>
<tr>
<td>VH polarization</td>
<td>Vertical polarization at emission and Horizontal at receiving</td>
<td>VLSI technology</td>
<td>Very Large Scale Integration technology</td>
</tr>
<tr>
<td>VV polarization</td>
<td>Vertical polarization at emission and receiving</td>
<td>WARM</td>
<td>WARtime reserve Modes</td>
</tr>
<tr>
<td>WARM</td>
<td>WARtime reserve Modes</td>
<td>WER</td>
<td>Word Error Rate</td>
</tr>
<tr>
<td>WM data fusion</td>
<td>Weighted Means data fusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

166
Index

Automatic target recognition
 AI paradigms-based approaches 21
 ALPR systems 55
 Appearance-based approaches 20
 ASR systems 64
 ATR systems 19
 Calibrated PCA algorithm 30
 Classification accuracy 35
 Confusion matrix 43
 Customized AT(T)R systems 46
 Data fusion 35
 Decision fusion 35, 40, 63
 Eigenvectors-based initialization MLP 33
 Embedded training 69
 ESPRIT 2D algorithm 39
 Feature extraction 25
 Feature selection 28
 Flusser invariants 27
 Flusser theorem 25
 Fuzzy-genetic integral 38
 Genetic algorithms 38, 107
 Hidden Markov models 65
 HRR-ATR systems 23, 38
 31, 39, 98
 HRR database (imagery) 98
 IR-ATR systems 23
 LP detection 56
 Mapping error 33
 Matching score 61
 Model-based approaches 20
 Multispectral/Multisensor 24
 Noise robustness 44
 OCR systems 59
 SAMMANN 31
 Sammon mapping 28, 30
 Skeleton feature 60
 Statistical methods 21
 Sugeno’s (fuzzy) integral 36
 Tracking function 47
 Video-ATR systems 22, 46
 Video database (imagery) 52
 Voice activity detector 66
 WER 68, 70
 3D target models 54

High-resolution radar
 Ambiguity body 95
 Arcsine temporal 78
 predistortioning function 87
 Autocorrelation function 87
 Blackman-Harris PSD function 92
 Compression (matched) filter 72, 79
 Cos^2 PSD function 96
 Cos^2 on pedestal PSD function 97
 Compression-weighting filter (response) 77, 79
 Doppler frequency shift 87, 95
 Frequency band correction 98
 Frequency modulation law 90
 Fresnel ripples 73, 81
 Group delay function 84
 Hamming weighting window 73, 79
 High-resolution range profiles 98
 IFFT 2D-based reconstruction algorithm 99, 102
 LFM signal 72
 MDL criterion 100
 MUSIC algorithm 100
 MUSIC 2D-based reconstruction algorithm 103
 NLFM signal 74, 85
 Phase modulation law 87
 Pseudo-NLFM signal 74
 PSD/PTD 74, 83, 88
 Root-MUSIC algorithm 100
 Sample interpolation 102
 Sidelobe suppression 77, 82
 Signal base 72
 Stationary phase points 83
 Stationary phase principle 83
 Superresolution techniques 99
 Synthetic range profile 99
 Taylor PSD function 88
Artificial intelligence

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding techniques</td>
<td>109, 113</td>
</tr>
<tr>
<td>Fitness functions</td>
<td>109, 113</td>
</tr>
<tr>
<td>FPGA MLP architecture</td>
<td>123</td>
</tr>
<tr>
<td>FPGA RBF architecture</td>
<td>118</td>
</tr>
<tr>
<td>FPGA technology</td>
<td>116</td>
</tr>
<tr>
<td>Full-genetic MLP training</td>
<td>113</td>
</tr>
<tr>
<td>Full-genetic RBF training</td>
<td>108, 112</td>
</tr>
<tr>
<td>GA-based clustering</td>
<td>107</td>
</tr>
<tr>
<td>GAMLP systems</td>
<td>113</td>
</tr>
<tr>
<td>GANN system concept</td>
<td>22, 104</td>
</tr>
<tr>
<td>GARBF systems</td>
<td>106</td>
</tr>
<tr>
<td>Hardware implementation</td>
<td>116</td>
</tr>
<tr>
<td>Hybrid AI paradigms</td>
<td>103</td>
</tr>
<tr>
<td>Hybrid neural network</td>
<td>49</td>
</tr>
<tr>
<td>ICs architecture</td>
<td>119</td>
</tr>
<tr>
<td>Neuro-fuzzy architectures</td>
<td>104</td>
</tr>
<tr>
<td>Neuro-fuzzy-genetic architectures</td>
<td>105</td>
</tr>
<tr>
<td>Neurohardware system</td>
<td>116</td>
</tr>
<tr>
<td>Pocket algorithm (GA)</td>
<td>38</td>
</tr>
<tr>
<td>Pruning techniques</td>
<td>115</td>
</tr>
</tbody>
</table>

Electronic warfare

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor networks (NCW)</td>
<td>133</td>
</tr>
<tr>
<td>ADMR</td>
<td>128</td>
</tr>
<tr>
<td>C2EW AZUR system</td>
<td>134</td>
</tr>
<tr>
<td>C2 networks (NCW)</td>
<td>133</td>
</tr>
<tr>
<td>COMSEC</td>
<td>126</td>
</tr>
<tr>
<td>Delta experiment</td>
<td>132</td>
</tr>
<tr>
<td>DEW theory</td>
<td>127</td>
</tr>
<tr>
<td>EA/ECM</td>
<td>125</td>
</tr>
<tr>
<td>EP/ECCM</td>
<td>126</td>
</tr>
<tr>
<td>ES/ESM</td>
<td>125</td>
</tr>
<tr>
<td>EW applications</td>
<td>130</td>
</tr>
<tr>
<td>EW GUI</td>
<td>129</td>
</tr>
<tr>
<td>EW theory</td>
<td>127</td>
</tr>
<tr>
<td>EW taxonomy</td>
<td>125</td>
</tr>
<tr>
<td>EW versus NCW</td>
<td>133</td>
</tr>
<tr>
<td>Generalized EW</td>
<td>133</td>
</tr>
<tr>
<td>INT techniques</td>
<td>124</td>
</tr>
<tr>
<td>NCW taxonomy</td>
<td>131</td>
</tr>
<tr>
<td>Passive jamming</td>
<td>131</td>
</tr>
<tr>
<td>Sensor networks (NCW)</td>
<td>132</td>
</tr>
<tr>
<td>STEALTH technology</td>
<td>125, 127</td>
</tr>
<tr>
<td>System by system concept</td>
<td>135</td>
</tr>
</tbody>
</table>